例如 000026.SH
我使用download_history_data下载1m历史数据后,用 get_market_data_ex 查看,收盘价几千元,而这个股票实际才十几块,请问是下载的数据错了吗?是不是需要删了重新下载?
以下是代码:
from xtquant import xtdata
import time
def my_download(stock_list:list,period:str,start_date = '', end_date = ''):
'''
用于显示下载进度
'''
import string
if [i for i in ["d","w","mon","q","y",] if i in period]:
period = "1d"
elif "m" in period:
numb = period.translate(str.maketrans("", "", string.ascii_letters))
if int(numb) < 5:
period = "1m"
else:
period = "5m"
elif "tick" == period:
pass
else:
raise KeyboardInterrupt("周期传入错误")
n = 1
num = len(stock_list)
for i in stock_list:
print(f"当前正在下载 {period} {n}/{num}")
xtdata.download_history_data(i,period,start_date, end_date)
n += 1
print("下载任务结束")
def do_subscribe_quote(stock_list:list, period:str):
for i in stock_list:
xtdata.subscribe_quote(i,period = period)
time.sleep(1) # 等待订阅完成
if __name__ == "__main__":
start_date = '20250626'# 格式"YYYYMMDD",开始下载的日期,date = ""时全量下载
end_date = ""
period = "1m"
need_download = 1 # 取数据是空值时,将need_download赋值为1,确保正确下载了历史数据
code_list = ["000026.SH"] # 股票列表
############ 仅获取历史行情 #####################
count = -1 # 设置count参数,使gmd_ex返回全部数据
data1 = xtdata.get_market_data_ex([],code_list,period = period, start_time = '', end_time = '')
# ############ 仅获取最新行情 #####################
# do_subscribe_quote(code_list,period)# 设置订阅参数,使gmd_ex取到最新行情
# count = 1 # 设置count参数,使gmd_ex仅返回最新行情数据
# data2 = xtdata.get_market_data_ex([],code_list,period = period, start_time = start_date, end_time = end_date, count = 1) # count 设置为1,使返回值只包含最新行情
# ############ 获取历史行情+最新行情 #####################
# do_subscribe_quote(code_list,period) # 设置订阅参数,使gmd_ex取到最新行情
# count = -1 # 设置count参数,使gmd_ex返回全部数据
# data3 = xtdata.get_market_data_ex([],code_list,period = period, start_time = start_date, end_time = end_date, count = -1) # count 设置为1,使返回值只包含最新行情
print(data1)# 行情数据查看
# print(data2[code_list[0]].tail())
# print(data3[code_list[0]].tail())
{'000026.SH': time open high low close volume \
20200803093000 1596418200000 2234.010 2234.010 2234.010 2234.010 126852
20200803093100 1596418260000 2233.437 2235.109 2232.344 2234.687 317125
20200803093200 1596418320000 2232.764 2232.957 2226.241 2226.241 181679
20200803093300 1596418380000 2228.664 2229.454 2227.139 2227.740 188514
20200803093400 1596418440000 2227.988 2228.134 2223.660 2223.660 208940
... ... ... ... ... ... ...
20250707145600 1751871360000 3803.066 3803.518 3802.039 3802.039 58421
20250707145700 1751871420000 3802.790 3803.615 3802.224 3803.319 59097
20250707145800 1751871480000 3804.056 3804.362 3804.056 3804.362 2344
20250707145900 1751871540000 3804.362 3804.362 3804.362 3804.362 0
20250707150000 1751871600000 3803.890 3804.204 3803.890 3804.204 70766
amount settelementPrice openInterest preClose \
20200803093000 135070243.0 0.0 0 2240.037
20200803093100 327998575.0 0.0 0 2234.010
20200803093200 191493513.0 0.0 0 2234.687
20200803093300 209831216.0 0.0 0 2226.241
20200803093400 211746838.0 0.0 0 2227.740
... ... ... ... ...
20250707145600 80430856.0 0.0 0 3802.899
20250707145700 78849071.0 0.0 0 3802.038
20250707145800 3859424.0 0.0 0 3803.320
20250707145900 0.0 0.0 0 3804.362
20250707150000 105531631.0 0.0 0 3804.361
...
20250707145900 0
20250707150000 0
[287754 rows x 11 columns]}
|