返回列表 发布新帖

大qmt聚宽交易系统-2聚宽策略回测教程

46 0

聚宽有很多好的策略,可以跟踪学习策略的思路,是非常有借鉴价值的,怎么样在聚宽建立策略回测,

可以下载代码直接使用

1先登录平台

2点击上面的策略回测

3点击新建策略

4可以选择日期,开始时间,结束稍等等回测

回测的结果指标

知识星球全部有

image.png

回测的源代码

# 克隆自聚宽文章:https://www.joinquant.com/post/49085
# 标题:四大搅屎棍策略
# 作者:MarioC

# 初始化函数
def initialize(context):
    # 设定基准
    set_benchmark('000985.XSHG')
    # 用真实价格交易
    set_option('use_real_price', True)
    # 打开防未来函数
    set_option("avoid_future_data", True)
    # 将滑点设置为0
    set_slippage(FixedSlippage(0))
    # 设置交易成本万分之三,不同滑点影响可在归因分析中查看
    set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003,
                             close_today_commission=0, min_commission=5), type='stock')
    # 过滤order中低于error级别的日志
    log.set_level('order', 'error')
    # 初始化全局变量
    g.stock_num = 10
    g.hold_list = []  # 当前持仓的全部股票
    g.yesterday_HL_list = []  # 记录持仓中昨日涨停的股票
    g.num=1
    # 设置交易运行时间
    run_daily(prepare_stock_list, '9:05')
    run_weekly(weekly_adjustment, 1, '9:30')
    run_daily(check_limit_up, '14:00')  # 检查持仓中的涨停股是否需要卖出


SW1 = {
    '801010': '农林牧渔I',
    '801020': '采掘I',
    '801030': '化工I',
    '801040': '钢铁I',
    '801050': '有色金属I',
    '801060': '建筑建材I',
    '801070': '机械设备I',
    '801080': '电子I',
    '801090': '交运设备I',
    '801100': '信息设备I',
    '801110': '家用电器I',
    '801120': '食品饮料I',
    '801130': '纺织服装I',
    '801140': '轻工制造I',
    '801150': '医药生物I',
    '801160': '公用事业I',
    '801170': '交通运输I',
    '801180': '房地产I',
    '801190': '金融服务I',
    '801200': '商业贸易I',
    '801210': '休闲服务I',
    '801220': '信息服务I',
    '801230': '综合I',
    '801710': '建筑材料I',
    '801720': '建筑装饰I',
    '801730': '电气设备I',
    '801740': '国防军工I',
    '801750': '计算机I',
    '801760': '传媒I',
    '801770': '通信I',
    '801780': '银行I',
    '801790': '非银金融I',
    '801880': '汽车I',
    '801890': '机械设备I',
    '801950': '煤炭I',
    '801960': '石油石化I',
    '801970': '环保I',
    '801980': '美容护理I'
}

# 1-1 准备股票池
def prepare_stock_list(context):
    # 获取已持有列表
    g.hold_list = []
    for position in list(context.portfolio.positions.values()):
        stock = position.security
        g.hold_list.append(stock)
    # 获取昨日涨停列表
    if g.hold_list != []:
        df = get_price(g.hold_list, end_date=context.previous_date, frequency='daily', fields=['close', 'high_limit'],
                       count=1, panel=False, fill_paused=False)
        df = df[df['close'] == df['high_limit']]
        g.yesterday_HL_list = list(df.code)
    else:
        g.yesterday_HL_list = []

industry_code = ['801010','801020','801030','801040','801050','801080','801110','801120','801130','801140','801150',\
                    '801160','801170','801180','801200','801210','801230','801710','801720','801730','801740','801750',\
                   '801760','801770','801780','801790','801880','801890']

def industry(stockList,industry_code,date):
    i_Constituent_Stocks={}
    for i in industry_code:
        temp = get_industry_stocks(i, date)
        i_Constituent_Stocks[i] = list(set(temp).intersection(set(stockList)))
    count_dict = {}
    for name, content_list in i_Constituent_Stocks.items():
        count = len(content_list)
        count_dict[name] = count
    return count_dict

def getStockIndustry(p_stocks, p_industries_type, p_day):
    dict_stk_2_ind = {}
    stocks_industry_dict = get_industry(p_stocks, date=p_day)
    for stock in stocks_industry_dict:
        if p_industries_type in stocks_industry_dict[stock]:
            dict_stk_2_ind[stock] = stocks_industry_dict[stock][p_industries_type]['industry_code']
    return pd.Series(dict_stk_2_ind)
# 1-2 选股模块
def get_stock_list(context):
    # 指定日期防止未来数据
    yesterday = context.previous_date
    today = context.current_dt
    final_list =[]
    # 获取初始列表
    initial_list = get_index_stocks('000985.XSHG', today)
    p_count=1
    p_industries_type='sw_l1'
    h = get_price(initial_list, end_date=yesterday, frequency='1d', fields=['close'], count=p_count + 20, panel=False)
    h['date'] = pd.DatetimeIndex(h.time).date
    df_close = h.pivot(index='code', columns='date', values='close').dropna(axis=0)
    df_ma20 = df_close.rolling(window=20, axis=1).mean().iloc[:, -p_count:]
    df_bias = (df_close.iloc[:, -p_count:] > df_ma20) 
    s_stk_2_ind = getStockIndustry(p_stocks=initial_list, p_industries_type=p_industries_type, p_day=yesterday)
    df_bias['industry_code'] = s_stk_2_ind
    df_ratio = ((df_bias.groupby('industry_code').sum() * 100.0) / df_bias.groupby(
        'industry_code').count()).round()  
    column_names = df_ratio.columns.tolist()
    top_values = df_ratio[datetime.date(yesterday.year, yesterday.month, yesterday.day)].nlargest(g.num)
    I   =  top_values.index.tolist()
    sum_of_top_values = df_ratio.sum()
    TT = sum_of_top_values[datetime.date(yesterday.year, yesterday.month, yesterday.day)]
    name_list = [SW1[code] for code in I]
    print(name_list)
    print('全市场宽度:',np.array(df_ratio.sum(axis=0).mean()))
    if '801780' not in I and '801050' not in I and '801950' not in I and '801040' not in I:
        #《银行、有色金属、钢铁、煤炭》搅屎棍不在,开仓
        S_stocks = get_index_stocks('399101.XSHE', today)
        stocks = filter_kcbj_stock(S_stocks)
        choice = filter_st_stock(stocks)
        choice = filter_new_stock(context, choice)
        BIG_stock_list = get_fundamentals(query(
                valuation.code,
            ).filter(
                valuation.code.in_(choice),
                indicator.roe > 0.15,
                indicator.roa > 0.10,
            ).order_by(
        valuation.market_cap.asc()).limit(g.stock_num)).set_index('code').index.tolist()
        BIG_stock_list = filter_paused_stock(BIG_stock_list)
        BIG_stock_list = filter_limitup_stock(context,BIG_stock_list)
        L = filter_limitdown_stock(context,BIG_stock_list)
    else:
        print('跑')
        L=[]
    return L

# 1-3 整体调整持仓
def weekly_adjustment(context):
    target_B = get_stock_list(context)
    # 调仓卖出
    for stock in g.hold_list:
        if (stock not in target_B) and (stock not in g.yesterday_HL_list):
            position = context.portfolio.positions[stock]
            close_position(position)
    position_count = len(context.portfolio.positions)
    target_num = len(target_B)
    if target_num > position_count:
        buy_num = min(len(target_B), g.stock_num*g.num - position_count)
        value = context.portfolio.cash / buy_num
        for stock in target_B:
            if stock not in list(context.portfolio.positions.keys()):
                if open_position(stock, value):
                    if len(context.portfolio.positions) == target_num:
                        break

def check_limit_up(context):
    now_time = context.current_dt
    if g.yesterday_HL_list != []:
        # 对昨日涨停股票观察到尾盘如不涨停则提前卖出,如果涨停即使不在应买入列表仍暂时持有
        for stock in g.yesterday_HL_list:
            current_data = get_price(stock, end_date=now_time, frequency='1m', fields=['close', 'high_limit'],
                                     skip_paused=False, fq='pre', count=1, panel=False, fill_paused=True)
            if current_data.iloc[0, 0] < current_data.iloc[0, 1]:
                log.info("[%s]涨停打开,卖出" % (stock))
                position = context.portfolio.positions[stock]
                close_position(position)
            else:
                log.info("[%s]涨停,继续持有" % (stock))

# 3-1 交易模块-自定义下单
def order_target_value_(security, value):
    if value == 0:
        log.debug("Selling out %s" % (security))
    else:
        log.debug("Order %s to value %f" % (security, value))
    return order_target_value(security, value)


# 3-2 交易模块-开仓
def open_position(security, value):
    order = order_target_value_(security, value)
    if order != None and order.filled > 0:
        return True
    return False


# 3-3 交易模块-平仓
def close_position(position):
    security = position.security
    order = order_target_value_(security, 0)  # 可能会因停牌失败
    if order != None:
        if order.status == OrderStatus.held and order.filled == order.amount:
            return True
    return False


# 2-1 过滤停牌股票
def filter_paused_stock(stock_list):
    current_data = get_current_data()
    return [stock for stock in stock_list if not current_data[stock].paused]


# 2-2 过滤ST及其他具有退市标签的股票
def filter_st_stock(stock_list):
    current_data = get_current_data()
    return [stock for stock in stock_list
            if not current_data[stock].is_st
            and 'ST' not in current_data[stock].name
            and '*' not in current_data[stock].name
            and '退' not in current_data[stock].name]


# 2-3 过滤科创北交股票
def filter_kcbj_stock(stock_list):
    for stock in stock_list[:]:
        if stock[0] == '4' or stock[0] == '8' or stock[:2] == '68' or stock[0] == '3':
            stock_list.remove(stock)
    return stock_list


# 2-4 过滤涨停的股票
def filter_limitup_stock(context, stock_list):
    last_prices = history(1, unit='1m', field='close', security_list=stock_list)
    current_data = get_current_data()
    return [stock for stock in stock_list if stock in context.portfolio.positions.keys()
            or last_prices[stock][-1] < current_data[stock].high_limit]


# 2-5 过滤跌停的股票
def filter_limitdown_stock(context, stock_list):
    last_prices = history(1, unit='1m', field='close', security_list=stock_list)
    current_data = get_current_data()
    return [stock for stock in stock_list if stock in context.portfolio.positions.keys()
            or last_prices[stock][-1] > current_data[stock].low_limit]


# 2-6 过滤次新股
def filter_new_stock(context, stock_list):
    yesterday = context.previous_date
    return [stock for stock in stock_list if
            not yesterday - get_security_info(stock).start_date < datetime.timede

回复

您需要登录后才可以回帖 登录 | 立即注册

客服专线

400-080-8112

用思考的速度交易,用真诚的态度合作,我们是认真的!
  • 关注公众号
  • 添加微信客服
Copyright © 2001-2025 迅投QMT社区 版权所有 All Rights Reserved. 京ICP备2025122616号-3
关灯 快速发帖
扫一扫添加微信客服
QQ客服返回顶部
快速回复 返回顶部 返回列表